ÁREA: MATEMATICA | GRADO: 10° | |
DOCENTE: ENAIDO MALDONADO POLO | CORREO: matematica. ceqa@gmail.com | |
FECHA: DEL 24 DE OCTUBRE DEL 2024 | PERIODO: CUARTO | |
VALOR: AMISTAD | FRASE: "SOMOS INTEGRALES ASI NOS HIZO DIOSQUERIDOS AMIGOS OFRECE ESTA OPCION EDUCACION EN SABERES,VALOR Y FORMACION BUSCANDO EN NOSOTRO SIEMPRE LO MEJOR" |
FECHA: DEL 24 DE OCTUBRE DEL 2024
GRADO: 10°
TEMA: MATRICES
LOGRO. Define una matriz, su utilidad y aplicación en otros campos del saber.
Cada uno de los números de que consta la matriz se denomina elemento. Así, los elementos de nuestra matriz del ejemplo anterior serían lo números que contiene .
El número de filas y columnas de una matriz se denomina dimensión de una matriz.
Una matriz de filas y columnas podemos denotarla como (siempre el número de la izquierda en el subíndice indica las filas, mientras que el de la derecha las columnas) o (está entre paréntesis), y un elemento cualquiera de la misma, que se encuentra en la fila y en la columna , por (no lleva paréntesis). Un elemento se distingue de otro por la posición que ocupa, es decir, la fila y la columna a la que pertenece.
Ejemplo:
Del ejemplo anterior, para nuestra matriz
tendríamos que sus elementos, al distinguirlos por posición, serían , , , , , , , , , , y . Además, su dimensión es de filas y columnas, por lo tanto podemos denotar a como o .
Dos matrices son iguales cuando tienen la misma dimensión y los elementos que ocupan el mismo lugar en ambas, son iguales. En forma matemática, si tenemos las matrices y
Entonces y son iguales si , y para cualquier y .
Ejemplo
Dadas las matrices
Tenemos que y son iguales ya que tienen la misma dimensión y los elementos de las mismas posiciones también son iguales. Sin embargo, y no son iguales ya que , pero , por lo tanto .
LINK SOBRE MATRICES
https://www.superprof.es/apuntes/escolar/matematicas/algebralineal/matrices/matrices-12.html
ACTIVIDAD REALIZA LAS DIFERENTES CLASES DE MATRICES QUE SE TRABAJARON EN CLASE
No hay comentarios.:
Publicar un comentario